direct product, metabelian, nilpotent (class 2), monomial, 3-elementary
Aliases: C2×C92⋊9C3, C92⋊22C6, C18⋊23- 1+2, C9⋊C9⋊12C6, (C9×C18)⋊9C3, C33.14(C3×C6), (C3×C6).30C33, (C3×C18).13C32, C9⋊5(C2×3- 1+2), C32.34(C32×C6), (C32×C6).13C32, (C6×3- 1+2).7C3, C6.10(C3×3- 1+2), C3.10(C6×3- 1+2), (C3×3- 1+2).10C6, (C2×C9⋊C9)⋊9C3, (C3×C9).7(C3×C6), SmallGroup(486,206)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C92⋊9C3
G = < a,b,c,d | a2=b9=c9=d3=1, ab=ba, ac=ca, ad=da, bc=cb, dbd-1=b7, dcd-1=c7 >
Subgroups: 252 in 140 conjugacy classes, 90 normal (10 characteristic)
C1, C2, C3, C3, C6, C6, C9, C9, C32, C32, C18, C18, C3×C6, C3×C6, C3×C9, 3- 1+2, C33, C3×C18, C2×3- 1+2, C32×C6, C92, C9⋊C9, C3×3- 1+2, C9×C18, C2×C9⋊C9, C6×3- 1+2, C92⋊9C3, C2×C92⋊9C3
Quotients: C1, C2, C3, C6, C32, C3×C6, 3- 1+2, C33, C2×3- 1+2, C32×C6, C3×3- 1+2, C6×3- 1+2, C92⋊9C3, C2×C92⋊9C3
(1 136)(2 137)(3 138)(4 139)(5 140)(6 141)(7 142)(8 143)(9 144)(10 91)(11 92)(12 93)(13 94)(14 95)(15 96)(16 97)(17 98)(18 99)(19 100)(20 101)(21 102)(22 103)(23 104)(24 105)(25 106)(26 107)(27 108)(28 84)(29 85)(30 86)(31 87)(32 88)(33 89)(34 90)(35 82)(36 83)(37 118)(38 119)(39 120)(40 121)(41 122)(42 123)(43 124)(44 125)(45 126)(46 127)(47 128)(48 129)(49 130)(50 131)(51 132)(52 133)(53 134)(54 135)(55 111)(56 112)(57 113)(58 114)(59 115)(60 116)(61 117)(62 109)(63 110)(64 145)(65 146)(66 147)(67 148)(68 149)(69 150)(70 151)(71 152)(72 153)(73 154)(74 155)(75 156)(76 157)(77 158)(78 159)(79 160)(80 161)(81 162)
(1 2 3 4 5 6 7 8 9)(10 11 12 13 14 15 16 17 18)(19 20 21 22 23 24 25 26 27)(28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45)(46 47 48 49 50 51 52 53 54)(55 56 57 58 59 60 61 62 63)(64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81)(82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99)(100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117)(118 119 120 121 122 123 124 125 126)(127 128 129 130 131 132 133 134 135)(136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153)(154 155 156 157 158 159 160 161 162)
(1 116 89 80 70 53 26 43 16)(2 117 90 81 71 54 27 44 17)(3 109 82 73 72 46 19 45 18)(4 110 83 74 64 47 20 37 10)(5 111 84 75 65 48 21 38 11)(6 112 85 76 66 49 22 39 12)(7 113 86 77 67 50 23 40 13)(8 114 87 78 68 51 24 41 14)(9 115 88 79 69 52 25 42 15)(28 156 146 129 102 119 92 140 55)(29 157 147 130 103 120 93 141 56)(30 158 148 131 104 121 94 142 57)(31 159 149 132 105 122 95 143 58)(32 160 150 133 106 123 96 144 59)(33 161 151 134 107 124 97 136 60)(34 162 152 135 108 125 98 137 61)(35 154 153 127 100 126 99 138 62)(36 155 145 128 101 118 91 139 63)
(2 5 8)(3 9 6)(10 47 83)(11 51 90)(12 46 88)(13 50 86)(14 54 84)(15 49 82)(16 53 89)(17 48 87)(18 52 85)(19 25 22)(21 24 27)(28 95 135)(29 99 133)(30 94 131)(31 98 129)(32 93 127)(33 97 134)(34 92 132)(35 96 130)(36 91 128)(37 110 64)(38 114 71)(39 109 69)(40 113 67)(41 117 65)(42 112 72)(43 116 70)(44 111 68)(45 115 66)(55 149 125)(56 153 123)(57 148 121)(58 152 119)(59 147 126)(60 151 124)(61 146 122)(62 150 120)(63 145 118)(73 79 76)(75 78 81)(100 106 103)(102 105 108)(137 140 143)(138 144 141)(154 160 157)(156 159 162)
G:=sub<Sym(162)| (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,116,89,80,70,53,26,43,16)(2,117,90,81,71,54,27,44,17)(3,109,82,73,72,46,19,45,18)(4,110,83,74,64,47,20,37,10)(5,111,84,75,65,48,21,38,11)(6,112,85,76,66,49,22,39,12)(7,113,86,77,67,50,23,40,13)(8,114,87,78,68,51,24,41,14)(9,115,88,79,69,52,25,42,15)(28,156,146,129,102,119,92,140,55)(29,157,147,130,103,120,93,141,56)(30,158,148,131,104,121,94,142,57)(31,159,149,132,105,122,95,143,58)(32,160,150,133,106,123,96,144,59)(33,161,151,134,107,124,97,136,60)(34,162,152,135,108,125,98,137,61)(35,154,153,127,100,126,99,138,62)(36,155,145,128,101,118,91,139,63), (2,5,8)(3,9,6)(10,47,83)(11,51,90)(12,46,88)(13,50,86)(14,54,84)(15,49,82)(16,53,89)(17,48,87)(18,52,85)(19,25,22)(21,24,27)(28,95,135)(29,99,133)(30,94,131)(31,98,129)(32,93,127)(33,97,134)(34,92,132)(35,96,130)(36,91,128)(37,110,64)(38,114,71)(39,109,69)(40,113,67)(41,117,65)(42,112,72)(43,116,70)(44,111,68)(45,115,66)(55,149,125)(56,153,123)(57,148,121)(58,152,119)(59,147,126)(60,151,124)(61,146,122)(62,150,120)(63,145,118)(73,79,76)(75,78,81)(100,106,103)(102,105,108)(137,140,143)(138,144,141)(154,160,157)(156,159,162)>;
G:=Group( (1,136)(2,137)(3,138)(4,139)(5,140)(6,141)(7,142)(8,143)(9,144)(10,91)(11,92)(12,93)(13,94)(14,95)(15,96)(16,97)(17,98)(18,99)(19,100)(20,101)(21,102)(22,103)(23,104)(24,105)(25,106)(26,107)(27,108)(28,84)(29,85)(30,86)(31,87)(32,88)(33,89)(34,90)(35,82)(36,83)(37,118)(38,119)(39,120)(40,121)(41,122)(42,123)(43,124)(44,125)(45,126)(46,127)(47,128)(48,129)(49,130)(50,131)(51,132)(52,133)(53,134)(54,135)(55,111)(56,112)(57,113)(58,114)(59,115)(60,116)(61,117)(62,109)(63,110)(64,145)(65,146)(66,147)(67,148)(68,149)(69,150)(70,151)(71,152)(72,153)(73,154)(74,155)(75,156)(76,157)(77,158)(78,159)(79,160)(80,161)(81,162), (1,2,3,4,5,6,7,8,9)(10,11,12,13,14,15,16,17,18)(19,20,21,22,23,24,25,26,27)(28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45)(46,47,48,49,50,51,52,53,54)(55,56,57,58,59,60,61,62,63)(64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81)(82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99)(100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117)(118,119,120,121,122,123,124,125,126)(127,128,129,130,131,132,133,134,135)(136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153)(154,155,156,157,158,159,160,161,162), (1,116,89,80,70,53,26,43,16)(2,117,90,81,71,54,27,44,17)(3,109,82,73,72,46,19,45,18)(4,110,83,74,64,47,20,37,10)(5,111,84,75,65,48,21,38,11)(6,112,85,76,66,49,22,39,12)(7,113,86,77,67,50,23,40,13)(8,114,87,78,68,51,24,41,14)(9,115,88,79,69,52,25,42,15)(28,156,146,129,102,119,92,140,55)(29,157,147,130,103,120,93,141,56)(30,158,148,131,104,121,94,142,57)(31,159,149,132,105,122,95,143,58)(32,160,150,133,106,123,96,144,59)(33,161,151,134,107,124,97,136,60)(34,162,152,135,108,125,98,137,61)(35,154,153,127,100,126,99,138,62)(36,155,145,128,101,118,91,139,63), (2,5,8)(3,9,6)(10,47,83)(11,51,90)(12,46,88)(13,50,86)(14,54,84)(15,49,82)(16,53,89)(17,48,87)(18,52,85)(19,25,22)(21,24,27)(28,95,135)(29,99,133)(30,94,131)(31,98,129)(32,93,127)(33,97,134)(34,92,132)(35,96,130)(36,91,128)(37,110,64)(38,114,71)(39,109,69)(40,113,67)(41,117,65)(42,112,72)(43,116,70)(44,111,68)(45,115,66)(55,149,125)(56,153,123)(57,148,121)(58,152,119)(59,147,126)(60,151,124)(61,146,122)(62,150,120)(63,145,118)(73,79,76)(75,78,81)(100,106,103)(102,105,108)(137,140,143)(138,144,141)(154,160,157)(156,159,162) );
G=PermutationGroup([[(1,136),(2,137),(3,138),(4,139),(5,140),(6,141),(7,142),(8,143),(9,144),(10,91),(11,92),(12,93),(13,94),(14,95),(15,96),(16,97),(17,98),(18,99),(19,100),(20,101),(21,102),(22,103),(23,104),(24,105),(25,106),(26,107),(27,108),(28,84),(29,85),(30,86),(31,87),(32,88),(33,89),(34,90),(35,82),(36,83),(37,118),(38,119),(39,120),(40,121),(41,122),(42,123),(43,124),(44,125),(45,126),(46,127),(47,128),(48,129),(49,130),(50,131),(51,132),(52,133),(53,134),(54,135),(55,111),(56,112),(57,113),(58,114),(59,115),(60,116),(61,117),(62,109),(63,110),(64,145),(65,146),(66,147),(67,148),(68,149),(69,150),(70,151),(71,152),(72,153),(73,154),(74,155),(75,156),(76,157),(77,158),(78,159),(79,160),(80,161),(81,162)], [(1,2,3,4,5,6,7,8,9),(10,11,12,13,14,15,16,17,18),(19,20,21,22,23,24,25,26,27),(28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45),(46,47,48,49,50,51,52,53,54),(55,56,57,58,59,60,61,62,63),(64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81),(82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99),(100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117),(118,119,120,121,122,123,124,125,126),(127,128,129,130,131,132,133,134,135),(136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153),(154,155,156,157,158,159,160,161,162)], [(1,116,89,80,70,53,26,43,16),(2,117,90,81,71,54,27,44,17),(3,109,82,73,72,46,19,45,18),(4,110,83,74,64,47,20,37,10),(5,111,84,75,65,48,21,38,11),(6,112,85,76,66,49,22,39,12),(7,113,86,77,67,50,23,40,13),(8,114,87,78,68,51,24,41,14),(9,115,88,79,69,52,25,42,15),(28,156,146,129,102,119,92,140,55),(29,157,147,130,103,120,93,141,56),(30,158,148,131,104,121,94,142,57),(31,159,149,132,105,122,95,143,58),(32,160,150,133,106,123,96,144,59),(33,161,151,134,107,124,97,136,60),(34,162,152,135,108,125,98,137,61),(35,154,153,127,100,126,99,138,62),(36,155,145,128,101,118,91,139,63)], [(2,5,8),(3,9,6),(10,47,83),(11,51,90),(12,46,88),(13,50,86),(14,54,84),(15,49,82),(16,53,89),(17,48,87),(18,52,85),(19,25,22),(21,24,27),(28,95,135),(29,99,133),(30,94,131),(31,98,129),(32,93,127),(33,97,134),(34,92,132),(35,96,130),(36,91,128),(37,110,64),(38,114,71),(39,109,69),(40,113,67),(41,117,65),(42,112,72),(43,116,70),(44,111,68),(45,115,66),(55,149,125),(56,153,123),(57,148,121),(58,152,119),(59,147,126),(60,151,124),(61,146,122),(62,150,120),(63,145,118),(73,79,76),(75,78,81),(100,106,103),(102,105,108),(137,140,143),(138,144,141),(154,160,157),(156,159,162)]])
102 conjugacy classes
class | 1 | 2 | 3A | ··· | 3H | 3I | 3J | 6A | ··· | 6H | 6I | 6J | 9A | ··· | 9X | 9Y | ··· | 9AN | 18A | ··· | 18X | 18Y | ··· | 18AN |
order | 1 | 2 | 3 | ··· | 3 | 3 | 3 | 6 | ··· | 6 | 6 | 6 | 9 | ··· | 9 | 9 | ··· | 9 | 18 | ··· | 18 | 18 | ··· | 18 |
size | 1 | 1 | 1 | ··· | 1 | 9 | 9 | 1 | ··· | 1 | 9 | 9 | 3 | ··· | 3 | 9 | ··· | 9 | 3 | ··· | 3 | 9 | ··· | 9 |
102 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | 3 |
type | + | + | ||||||||
image | C1 | C2 | C3 | C3 | C3 | C6 | C6 | C6 | 3- 1+2 | C2×3- 1+2 |
kernel | C2×C92⋊9C3 | C92⋊9C3 | C9×C18 | C2×C9⋊C9 | C6×3- 1+2 | C92 | C9⋊C9 | C3×3- 1+2 | C18 | C9 |
# reps | 1 | 1 | 2 | 16 | 8 | 2 | 16 | 8 | 24 | 24 |
Matrix representation of C2×C92⋊9C3 ►in GL7(𝔽19)
18 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 18 | 12 | 9 | 0 | 0 | 0 |
0 | 11 | 0 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 10 | 0 |
0 | 0 | 0 | 0 | 5 | 3 | 1 |
0 | 0 | 0 | 0 | 15 | 17 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 12 | 8 | 6 | 0 | 0 | 0 |
0 | 1 | 0 | 11 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
7 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 0 | 0 | 0 | 0 |
0 | 12 | 1 | 7 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 2 | 7 | 0 |
0 | 0 | 0 | 0 | 2 | 0 | 11 |
G:=sub<GL(7,GF(19))| [18,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,18,11,0,0,0,0,11,12,0,0,0,0,0,0,9,7,0,0,0,0,0,0,0,16,5,15,0,0,0,0,10,3,17,0,0,0,0,0,1,0],[1,0,0,0,0,0,0,0,0,12,1,0,0,0,0,1,8,0,0,0,0,0,0,6,11,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[7,0,0,0,0,0,0,0,1,0,12,0,0,0,0,0,11,1,0,0,0,0,0,0,7,0,0,0,0,0,0,0,1,2,2,0,0,0,0,0,7,0,0,0,0,0,0,0,11] >;
C2×C92⋊9C3 in GAP, Magma, Sage, TeX
C_2\times C_9^2\rtimes_9C_3
% in TeX
G:=Group("C2xC9^2:9C3");
// GroupNames label
G:=SmallGroup(486,206);
// by ID
G=gap.SmallGroup(486,206);
# by ID
G:=PCGroup([6,-2,-3,-3,-3,-3,-3,548,176,2169,237]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^9=c^9=d^3=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,d*b*d^-1=b^7,d*c*d^-1=c^7>;
// generators/relations